SYNTHESIS AND CHARACTERIZATION OF RuO2/POLY (3,4- ETHYLENEDIOXYTHIOPHENE) (PEDOT) COMPOSITE NANOTUBES FOR SUPERCAPACITORS

نویسندگان

  • Ran Liu
  • Jonathon Duay
  • Sang Bok Lee
چکیده

We report the synthesis of composite RuO2/(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application to the electrode materials for a high-energized and high-powered supercapacitor. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO2 into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO2 from breaking while the rigid RuO2 keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO2/PEDOT nanotube can reach a high power density of 20 kW/kg while maintaining 80% of its energy density (28 Wh/kg). This high power capability is attributed to the fast charge/discharge of nanotubular structures. The high energy density is benefited from the RuO2, of which the high specific capacitance (1217 F/g) is realized owing to its high specific surface area brought by the nanotubular structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of bicontinuous cubic poly(3,4-ethylene dioxythiophene) gyroid (PEDOT GYR) gels.

We describe the synthesis and characterization of bicontinuous cubic poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer gels prepared within lyotropic cubic poly(oxyethylene)10 nonylphenol ether (NP-10) templates with Ia3[combining macron]d (gyroid, GYR) symmetry. The chemical polymerization of EDOT monomer in the hydrophobic channels of the NP-10 GYR phase was initiated by AgNO3, a mi...

متن کامل

Synthesis and Characterization of Conducting Polymer Actuators

Conducting polymers are known to mechanically respond to electrochemical stimuli and have been utilized as linear actuators. To date, the most successful mechanism for actuation is ionic ingress and egress, though mechanisms based on conformational changes and molecular interactions have also been proposed. In the pursuit of new conducting polymer actuators it is necessary to design, synthesize...

متن کامل

Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation

Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs) of poly(diethyl-4,4'-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1,4-phenylene] bis(oxy)}dibutanoate) (P1) and poly...

متن کامل

Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance

In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and ...

متن کامل

Water-processable polymer-nanocrystal hybrids for thermoelectrics.

We report the synthesis and thermoelectric characterization of composite nanocrystals composed of a tellurium core functionalized with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Solution processed nanocrystal films electronically out perform both PEDOT:PSS and unfunctionalized Te nanorods while retaining a polymeric thermal conductivity, resultin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009